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PROJECT SUMMARY 

TOPIC:  Incorporating Space-borne Measurements to Improve Air 
Quality Decision Support Systems 

 

POP: 10/1/2009 – 9/30/2013 (ROSES-08-AQ) 
 NCE till        9/30/2014 
 

PI:  Arastoo Pour Biazar (University of Alabama – Huntsville) 
Co-Is:  Dick McNider (UAH), Mike Newchurch (UAH), M. Khan (USRA), Bill 

Koshak (NASA) 
 
Partners:  USEPA, Texas Commission on Environmental Quality (TCEQ), 

Georgia Environmental Protection Division (GA-EPD)  
 
NASA Assets:  NASA’s GOES Product Generation System; OMI ozone, 

formaldehyde, and nitrogen dioxide observations; MODIS Aerosol 
Products; NASA Lightning NOx-production Model (LNOM) 

 
Objective: To employ NASA assets and satellite products to improve the air 

quality management Decision Support Tools (DSTs) used in defining 
emission control strategies for attainment of air quality standards. 
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Overall Objective: To Reduce the Uncertainties in Regulatory Air Quality 
Simulations Through the Use of NASA Science and Satellite Data Products 

In SIP modeling it is imperative to reproduce the observed atmosphere. Model uncertainties 
translates into uncertainties in emission control strategy which has significant economic 

consequences. 
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Specific Objectives – Three Projects in One 

 In This Project NASA Assets and Satellite Data Will Be Used to Improve the 
Quality and Accuracy of Retrospective Baseline Simulation in Which Proposed 

SIP Emission Reductions Are Tested 
 
 

Improving Model Emissions 
 Utilization of NASA Lightning NOx-production Model (LNOM): This activity utilizes 

LNOM to account for Lightning NO Production (LNOx) in convective clouds.    
 
 

Improving Chemical Atmosphere 
 Satellite Trace Gas/Aerosol Utilization: This activity improves chemical 

transboundary and initial conditions in the air quality model.  The satellite products 
such as MODIS aerosol and newly available OMI ozone profiles can significantly 
impact the realization of the chemical state of the atmosphere.  

 
 

Improving Physical Atmosphere  
 Improving Model Location and Timing of Clouds: Clouds have a profound role in 

photolysis activity, boundary-layer development, and deep vertical mixing of pollutants 
and precursors.  Satellite products will be utilized to improve model cloud simulation. 
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LNOM ACTIVITY 

 Five year August statistics (2005-2009) used to construct the profile. 

 CG: 484 mole/flash; IC: 35 mole/flash; Average: 101 mole/flash 

  
Wang et al. 

(1998) 
(laboratory) 

Cooray et al. 
(2009) 

(theoretical) 



LNOM ACTIVITY 
 Implemented in WRF/CMAQ and evaluated the impact on ozone 

 Collaborating with Ken Pickering for incorporation in official release of CMAQ 



ARL PROGRESS 

ARL 5: Validation in Relevant Environment (Potential Determined) 

 
 Application components integrated into a functioning prototype application 

system with realistic supporting elements: The data and documentations are 
readily availble at: http://ghrc.nsstc.nasa.gov/uso/ds_docs/ldar/ldar_dataset.html 

 LNOM LNOx was included in WRF/CMAQ simulations for August 2006. 
 

 The application system’s potential to improve the decision making activity 
determined and articulated: The results were evaluated and the impact on 
ozone predictions were demonstrated.  The technique and its application within 
WRF/CMAQ is documented in Wang et al., 2013 and Koshak et al., 2013. 
 Koshak, William, Harold Peterson, Maudood Khan, Arastoo Biazar, Lihua Wang: The NASA Lightning Nitrogen 

Oxides Model (LNOM): Application to Air Quality Modeling. Atmos. Res. (2013) 
http://dx.doi.org/10.1016/j.atmosres.2012.12.015. 

 Wang, Lihua, M.J. Newchurch, Arastoo Pour-Biazar, Shi Kuang, Maudood Khan, Xiong Liu, William Koshak, Kelly 
Chance (2013): Estimating the influence of lightning on upper tropospheric ozone using NLDN lightning data and 
CMAQ model, Atmospheric Environment, 67, 219-228. http://dx.doi.org/10.1016/j.atmosenv.2012.11.001.         
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http://dx.doi.org/10.1016/j.atmosenv.2012.11.001


Satellite Trace Gas/Aerosol Activity 

  Utilization of OMI ozone and MODIS Aerosol products 

 The observations were successfully incorporated in CMAQ 

 The improvements for SIP applications were documented in Pour-
Biazar et al., 2011, and Wang et al., 2011. 

The impact of incorporating OMI observations in 
CMAQ simulation on the boundary layer ozone for 
August 16, 2006.  

Incorporation of MODIS aerosol products in CMAQ 
substantially reduced model error with respect to 
PM2.5. Mean Fractional Bias was reduced by about 30%  

Pour-Biazar, A., M. Khan, L. Wang, Y. Park, M. Newchurch, R. T. McNider, X. Liu, D. W. Byun, and R. Cameron (2011), Utilization of 
satellite observation of ozone and aerosols in providing initial and boundary condition for regional air quality studies, J. Geophys. 
Res., 116, D18309, doi:10.1029/2010JD015200. 
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Wang, L., M. J. Newchurch, A. Biazar, X. Liu, S. Kuang, M. Khan, and K. Chance (2011), Evaluating AURA/OMI ozone profiles using 
ozonesonde data and EPA surface measurements for August 2006, Atmos. Environ., 45(31), 5523-5530. 

Satellite Trace Gas/Aerosol Activity 

OMI is not able to neither explain elevated 
surface concentrations nor the large 
variations experienced by the surface 
monitors. The correlation coefficient is 0.14. 

OMI is able to explain mid./upper 
tropospheric ozone.  An example of re-
sampling ozonesonde and OMI ozone 
profiles onto CMAQ’s 39 vertical layers at 
Huntsville, AL on August 1, 2006. 



ARL PROGRESS 
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ARL 5: Validation in Relevant Environment (Potential Determined) 

 
 Application components integrated into a functioning prototype application 

system with realistic supporting elements: OMI ozone profiles and MODIS 
aerosol products are readily available. Data products were successfully 
incorporated in MM5/CMAQ air quality modeling system  
 

 The application system’s potential to improve the decision making activity 
determined and articulated: The results were evaluated and the impact on 
ozone predictions were demonstrated.  The technique and its application within 
MM5/CMAQ is documented in Pour-Biazar et al., 2011 and Wang et al., 2011. 
 Pour-Biazar, A., M. Khan, L. Wang, Y. Park, M. Newchurch, R. T. McNider, X. Liu, D. W. Byun, and R. Cameron 

(2011), Utilization of satellite observation of ozone and aerosols in providing initial and boundary condition for 
regional air quality studies, J. Geophys. Res., 116, D18309, doi:10.1029/2010JD015200. 

 Wang, L., M. J. Newchurch, A. Biazar, X. Liu, S. Kuang, M. Khan, and K. Chance (2011), Evaluating AURA/OMI 
ozone profiles using ozonesonde data and EPA surface measurements for August 2006, Atmos. Environ., 45(31), 
5523-5530. 



Clouds: 
• Impact photolysis rates (impacting photochemical reactions for ozone and fine particle 

formation). 
• Impact transport/vertical mixing, LNOx, aqueous chemistry, wet removal, aerosol 

growth/recycling and indirect effects. 

BL Heights: 
• Affects dilution and pollutant concentrations. 

Temperature: 
• impacts biogenic emissions (soil NO, isoprene) as well as anthropogenic evaporative 

losses. 

• Affects chemical reaction rates and thermal decomposition of nitrates. 
Moisture: 
• Impacts gas/aerosol chemistry, as well as aerosol formation and growth. 

Winds: 
• Impacts transport/transformation 

Impact of Physical Atmosphere on SIP Control Strategies 



0.65um VIS surface, cloud features 

 Use satellite cloud top temperatures and cloud albedoes to estimate a TARGET 
VERTICAL VELOCITY (Wmax). 

 Adjust divergence to comply with Wmax in a way similar to O’Brien (1970). 
 Nudge model winds toward new horizontal wind field to sustain the vertical 

motion. 
 Remove erroneous model clouds by imposing subsidence (and suppressing 

convective initiation). 

W<0 

W>0 

Underprediction 

Overprediction 

Satellite Model/Satellite comparison 

Fundamental Approach 

Cloud Correction Activity 



Park, Yun-Hee, A. Pour-Biazar, R. T. McNider, B. Dornblaser, M. Khan, K. Doty, Assimilation of Satellite Data to Improve Cloud 
Simulation in WRF model: Statistical Approach (to be submitted to AE) 

Pour-Biazar, A., Y. Park, R. T. McNider, B. Dornblaser, M. Khan, K. Doty, Assimilation of Satellite Data to Improve Cloud Simulation in 
WRF model: Analytical Approach (to be submitted to AE) 

Cloud Correction 

  Improved Characterization of Clouds 

 The most difficult activity among three component of this project. 

 The technique was implemented in WRF modeling system. 

 Simulations for August 2006 were performed. 

 TCEQ continues to provide complementary funding for this work. 

Model performance with respect 
to cloud simulation was improved 
by 7-10% for August 2006 as 
measured by Agreement Index. 
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ARL PROGRESS 

ARL 5: Application components integrated into a prototype system and potential to 
improve the decision-making activity has been determined and articulated. 

 
 Application components integrated into a functioning prototype application 

system with realistic supporting elements: The technique was integrated into the 
DST (WRF modeling system). 

 The application system’s potential to improve the decision making activity 
determined and articulated: Simulations for August 2006 were performed, 
tested, evaluated, and demonstrated improvement in cloud simulation. 

 We are in the process of documenting and transitioning the codes to TCEQ to 
be tested independently and used in an operational setting. 

 

DST: WRF/CMAQ Modeling System 
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RISKS & ISSUES 

 During testing of Spatial Allocator we noticed a navigation error (surface albedo 
did not conform to coastal boundaries). 

 To address the issue we brought NASA/MSFC SPoRT, UAH, and 
Community Modeling and Analysis (CMAS) together. 

 The problem was that the Earth’s radius used (and the SW corner) from 
the GRIB header was not consistent with the internal workings of 
McIdas. 

 Resolution: From next month, the data will be distributed in ASCII format 
along with a geolocation file containing the location of data points. 

 Easy access to data and tools (for manipulation and re-mapping satellite data) 
remains a major concern for the user community. 

 We are working on a new web interface to acquire user input about the 
domain/resolution/format of interest and provide the data in a model 
friendly (DST compatible) format to the user. 



SCHEDULE / MILESTONES 
Major Tasks

Cloud Dynamical Support, 
Implementation/Test & 
Evaluation/Transition

OMI/TES ozone and MODIS aerosols, 
Implementation/Test & Evaluation

Lightning Generated Nitrogen Oxide from 
LNOM, Implementation/Test & Evaluation Paper published. Test in 

CMAQ.

Website Development for Dissemenating 
Tools & Data

Training Workshop for User Community

Benchmarking (multiple activities)

Transition Activities (CMAS, EPA, TCEQ)

* http://ghrc.nsstc.nasa.gov/uso/ds_docs/ldar/ldar_dataset.html Completed
Ongoing
Future
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Paper Submitted * 

Implemented in 
CMAQ, Paper 
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BUDGET 

 Requested NCE and it was approved.  POP extended to 9/30/2014. 

 The balance will be used to complete the transition to CMAS and hold a workshop. 

 TCEQ is providing additional funding of $150K for documentation/transition to 
TCEQ.  This brings the total complementary funding from TCEQ to $500K. 

Total
Balance

UAH
$855,932

CMAS
$139,000

NASA/USRA
$272,911

$33,803$20,050



Future Tasks 

  Resolve the issues with CMAS and hold a workshop. 

 Complete transitioning to CMAS and TCEQ. 

 Complete documentation. 

 Work with TCEQ for independent evaluation of tools and techniques. 

 Upgrade the current web based data delivery system for the new data 
format. 

 Respond to user community’s request for Photosyntheticall Active Radiation 
(PAR). 

 We had requests from Dave Allen’s group at University of Texas-
Austin, Russ Dickerson at University of Maryland and Rice University. 
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ACRONYMS 

CMAQ   EPA’s Community Multiscale Air Quality (CMAQ) Model 

CMAS   Community Modeling and Analysis System 

EPA   Environmental Protection Agency 

LNOx   Lightning Generated Nitrogen Oxides 

LNOM   Lightning Nitrogen Oxides Model 

NASA  National Aeronautics and Space Administration   

SIP   State Implementation Plan 

TCEQ   Texas Commission on Environmental Quality  
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Underprediction 

Overprediction 

Areas of disagreement 
between model and 
satellite observation 

A contingency table can be constructed 
to explain agreement/disagreement with 

observation  
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Cloud Correction: Identifying Areas of Under-/Over-prediction for Correction 
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Assimilation 
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Cloud Correction: Agreement Index = (# of cloudy/clear grids in agreement) / (Total # of grids) 
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Web Based Satellite data delivery system (SAT_ASSIM.NSSTC.UAH.EDU) 
 Archive and Distribute Data 
 Regridding Software 
 Data Processing Software 

Decision Support Tools  

Overview of the Data Archive & Delivery system 

NSSTC Satellite Ground Station & Data Link 

NSSTC Satellite Data Processing & Product Generation 
  Insolation 
  Skin Temperature 
  Surface Albedo 
  Cloud Albedo 
  Cloud Top Temperature/Pressure 
  Cloud Transmittance 
  MODIS Emissivity 

MM5/WRF CMAQ/WRFCHEM 

State, Local & Private Sector Users 



Web Based Delivery System 

sat_assim.nsstc.uah.edu 

Username: levl 

Password: sparkx 



The State Implementation Plan (SIP) Decision Making 
Process  

 Classification: Once an area exceeds the National Ambient Air Quality Standard 
(NAAQS) for a criteria pollutant (e.g., O3, NO2, SO2, particulate matter) and is 
listed by the USEPA as non-attainment the state must develop a plan or 
strategy to lower the pollutant levels to meet the NAAQS. 

 Design Period: A design day or design period is selected (usually the period 
when the highest pollutant levels occur). 

 Best Modeling Practice: Model simulations are carried out to determine whether 
the model can reasonably replicate the atmospheric conditions for such episode 
and the observed pollutant values for that period. 

 Emissions Reduction: Next various emission reduction scenarios in these 
models are carried out to determine the most efficient strategy for meeting the 
air quality standards for the design period. This defines the SIP.  

What is SIP 



Physical Model 

Recreates Physical 
Atmosphere 

Chemical Model 

Recreates Chemical 
Atmosphere 

Standard surface 
and upper air 

meteorological 
observations 

Special 
Observations 
Profiler/Sodar 

Ambient Levels 
Compared to NAAQS 

Control Strategy Simulations - Inputs 

Emissions are Changed 
to Reflect Control 

Programs on Industrial 
and Mobile Sources 

Initial/Boundary conditions 
IC/BC 



Physical Model 

Recreates Physical 
Atmosphere 

Chemical Model 

Recreates Chemical 
Atmosphere 

Geostationary 
Satellite 

•Insolation 
•Cloud Properties 
•Skin Temperature 

Satellite derived 
Cloud properties for 

photolysis rates 

MODIS 
•Surface emissivity 
•Surface albedo 
•Skin temperatures 

Satellite trace gas 
and aerosol 
observations 

Geostationary and Polar Orbiting Observations for Evaluation 

ASSIMILATION 

Design Period Simulations – Satellite Inputs 
Retrospective – Data Assimilated for all Integration Period 



 Under the Southern Oxidant Study it was estimated that 
SIP control decisions involved $5 billion for 6 southeastern 
states 

 In Texas the cost of the ozone SIP for Houston alone was 
estimated to be over $1 billion.  

 Nationally these SIPs amount to ten’s of billions in control 
costs (http://www.epa.gov/oar/sect812/feb11/fullreport.pdf).  

Control Strategy Decisions Made With WRF/CMAQ Can 
Amount to Billions of Dollars 



SUMMARY of PROGRESS – LNOM LNOx Activity 

  LNOM LNOx Activity 

 The method and its first application within WRF/CMAQ have been 
documented (Koshak et al., 2012).  

 Simulations over 4 summers are underway, quantifying the model 
error due to lack of LNOx in default CMAQ configuration. 

 The data and documentations are now available at 
(http://lightning.nsstc.nasa.gov/data/index.html#LNOM_DATA) 

(Adapted from Koshak et al., 2012) 

http://lightning.nsstc.nasa.gov/data/index.html
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